The Application of a Commercial Wideband Constellation for ISS Communications

Presented By: Dr. Joseph Bravman, Orbital Sciences Corporation
Co-author: Mr. Greg Giffin, MacDonald Dettwiler and Associates Ltd.

Based on Material Presented to NASA Lewis Research Center
Outline

• Review of Why Stations Comms Are Unique
• Overview of Previous Study Results
• Case for V-band MEO Consideration
• The ORBLINK System
• Application to ISS Communications
• Conclusions and Future Work
Unique Station Requirements

- **The ISS Is Not a Fixed Terrestrial Point**
 - This User Is Travelling ~7000 m/s With Respect to Other System Users
 - It Is About 400 Km Above Other System Users

- **The ISS Requires Service Over Both Land and Water**
 - This User Requires Continuous Coverage Over the Latitude Band Between 57 Deg. North and 57 Deg. South

- **The ISS Requires Service Up to 100 Mbps Uplink and 300 Mbps Downlink (TDRSS)**
 - This User Is One of the Most Data Intensive
 - More Bandwidth Would Be Welcome

For Almost All High Rate (FSS) Commercial Ka-band and Above Systems These Characteristics Would Force Significant Modifications
Previous Study\(^{(†)}\) Results (FSS Portion)

- Study Evaluated Wideband Commercial System Providers
- Concluded That None of the Examined Systems Support the Continuous High Bandwidth ISS Requirements
- Did Not Consider Any of the Proposed V-band Systems

\(^{(†)}\) ‘Assessment of Emerging Networks to Support Future NASA Space Operations’ By Badri Younes\(^{(1)}\), Roger Flaherty\(^{(1)}\), Susan Chang\(^{(2)}\), Ted Berman\(^{(2)}\), Mark Burns\(^{(2)}\), Robert Chang\(^{(2)}\) and Robert Lease\(^{(2)}\)

\(^{(1)}\) NASA/Goddard Space Flight Center \(^{(2)}\) Stanford Telecom
Ka-band to V-band Comparison

<table>
<thead>
<tr>
<th></th>
<th>Ka-band ‘Bandwidth on Demand’</th>
<th>V-band ‘Infrastructure on Demand’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Service</td>
<td>‘~T1 To The Home’ (1.544 Mbps Level)</td>
<td>‘Bulk Data Backhaul’ (10’s to 100’s Mbps)</td>
</tr>
<tr>
<td>User Base</td>
<td>ROM hundreds of 1000’s</td>
<td>ROM 1000’s</td>
</tr>
<tr>
<td>Coverage</td>
<td>Broad Areas, Significant % of Land Mass Covered</td>
<td>Select ‘Data Intense’ Areas, % of Land Mass Covered Smaller</td>
</tr>
<tr>
<td>Comments</td>
<td>Some Systems Plan To Offer Specialized High Rate ‘Gateway’ Service (Up To OC12 For Teledesic/Celestri) But This Is Not Primary Focus</td>
<td>Small Beams Result From Increase In Carrier Frequency And Gain Required To Fight More Severe Rain Fade</td>
</tr>
</tbody>
</table>

Qualitatively Suggests That V-band Systems Will Have Primary Focus on Users With Rates More Comparable to Station Needs And Deliver This ‘Bulk’ Service at Reduced Cost/bit

Q/V and Ka Systems Compared: Data per Dollar

Source: FCC Filings
• V-Band Commercial Communications System (38 GHz D/L and 48.2 GHz U/L)
 – Primary Services Are 1) 1.244 Gbps ‘Data Backhaul’
 2) 10 to 51.84 Mbps ‘Wideband’

• 7 Satellite Constellation in a 9000 Km Equatorial Orbit (Plus One Spare)
 – Latency of ~1/16 S
 – Achieves Coverage of 93% of Population at Min. Elevation of 10 Deg.
 – Leverages System Power Over GEO’s for Better Capacity to Cost Ratio
 – Avoids LEO Complexity and Size

• Deployment Over 2003-4
 – NovaStar Adaptation
 – Orbital’s End-to-end Ability
ORBLINK Baseline: Architecture

“Ring of Bandwidth”
“Infrastructure On Demand”

7 Gbps
ISL
(13000 km)

Each of 7 Equatorial Satellites form 100 Tracking Beams, 20 for Backhaul and 80 for Wideband

Backhaul User @ 1.2 Gbps, one per beam

Wideband User @ 10 to 51.84 Mbps, ~50 per beam
Baseline ORBLINK Covers ISS 58.3% of the Time (Gold = Covered, Blue = Out of Beam-Form Cone)
A Small Increase In Beam Forming Cone Size Increases ISS-ORBLINK Availability To 100%
Results Summary

500 km User, 57.0º Inclination

<table>
<thead>
<tr>
<th></th>
<th>Cyberstar</th>
<th>Spaceway</th>
<th>Teledesic</th>
<th>Orblink²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constellation Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constellation Orbit</td>
<td>GEO</td>
<td>GEO</td>
<td>LEO</td>
<td>MEO</td>
</tr>
<tr>
<td>Data Rate</td>
<td>3.1 Mbps</td>
<td>6.3 Mbps</td>
<td>2.1 Mbps</td>
<td>1.244 Gbps</td>
</tr>
<tr>
<td>Communications Coverage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Service Duration/Orbit</td>
<td>Land Coverage¹</td>
<td>44.4 minutes</td>
<td>1.1 minutes</td>
<td>Total</td>
</tr>
<tr>
<td>Maximum Null Time</td>
<td>Land Coverage¹</td>
<td>47.1 minutes</td>
<td>> 1 orbit</td>
<td>None</td>
</tr>
<tr>
<td>Maximum Data Throughput/Day</td>
<td>Land Coverage¹</td>
<td>254.9 Gbits</td>
<td>2.10 Gbits</td>
<td>7062 Gbits</td>
</tr>
<tr>
<td>User Terminal Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Required EIRP</td>
<td>48.73 dBW</td>
<td>48.55 dBW</td>
<td>33.23 dBW</td>
<td>62.30 dBW</td>
</tr>
<tr>
<td>Required G/T</td>
<td>19.33 dB/K</td>
<td>25.95 dB/K</td>
<td>8.13 dB/K</td>
<td>36.0 dB/K</td>
</tr>
</tbody>
</table>

1. Not evaluated due to limited geometric coverage
2. Table presented in previous study but with Orblink results added

ORBLINK Can Meet ISS’s Need for Continuous and High Bandwidth Communications
Conclusions

ORBLINK Offerings to ISS:
- Low Modification and Low Cost Commercial Communications System Solution
- OC-24 Link That Effectively Removes Bandwidth Constraints on ISS Operation
- High Quality Service
 - Low BER
 - Low Latency
 - 100% Availability

Future Work:
- Consider Other NGSO V-band Systems That May Require Low Modification to Support ISS Requirements

ORBLINK Offers ISS A Lower Cost and High Quality ‘Fiber Optic to Orbit’ Service