A Commercial Communications System for the ISS

John S. Baras

Presentation at the ISS Utilization Conference
Albuquerque, New Mexico
February 2, 1999
High Data Rate Communications from Spacecraft and Space Missions

- **Commercial Space needs high data rate and high quality communications**
 - Experiments with Shuttle
 - Experiments with ISS
 - Spacecraft linkage
 - Future space habitats and planetary missions

- **NASA networks, spacecraft, instruments on the Internet**

- **Needed:**
 - Efficient and cost effective communications from spacecraft to commercial satellite constellations
 - Experiments to validate such systems
Initiated interactive modeling and simulation of HDR telecomm services between the ISS and future HDR satellite constellations.
Support for NASA Missions: Objectives and Significance

• **Objectives:**
 – Provide high quality broadband communications connectivity to the ISS from commercial satellite networks
 – Facilitate broadband Internet services throughout NASA missions
 – Provide performance evaluation of space communication systems

• **Significance:**
 – International Space Station (ISS) is the NASA Mission with the highest priority
 – National Space Policy mandate for NASA to commercialize its space communications operations
 – Reduction in cost for NASA broadband communication needs
 – Better and easier dissemination of NASA mission and experiments data
Development of Simulation Testbed

• **Modular simulation testbed under development includes:**
 – Realistic traffic source models for broadband services
 – Protocol enhancements for Internet (TCP/IP) and ATM service provision via satellite
 – Orbital/coverage models of candidate satellite constellations
 – Satellite Gateway Model (Link Enhancements (Coding), Framing)

• **Further enhancements will include:**
 – Network topology architectures (including Inter Satellite Links)
 – Antenna & channel RF (Ka and V Band cases) characteristics
 – On-board switching models
 – Phase arrays and tracking
Project Plans

- **OBJECTIVE:** Investigate the use of commercial GEO and LEO/MEO satellite constellations for the communication needs of various NASA missions and in particular the International Space Station (ISS).

- **Phase I:**
 1. Determine, in cooperation with NASA LeRC particular traffic scenarios, QoS service requirements for initial analysis scenario
 2. Identify potential commercial systems as candidate for investigation, starting from simple GEO (existing) Ku/Ka-band systems and moving to Ka/V band MEO/LEO systems

- **Phase II:**
 1. Where necessary apply analytical tools for traffic modeling, handoff analysis, fast end-to-end performance evaluation
 2. Develop simulation model that includes network architecture & topology of Hybrid Network, including:
 - ISS (treated as an extremely LEO satellite) & NASA ground network.
 - Candidate Commercial Systems (constellation orbit model, ground network topology, information on routing options through constellation, ISLs if any)
Project Plans

• Phase III:
 – Using analysis & simulation perform detailed studies to quantify the performance of candidate satellite systems for specific services, protocols & traffic scenarios and recommend potential design modifications to ensure NASA’s QoS requirements are met

& MEO Constellation - Orbit Model
Performance Parameters for NASA Missions

- **Performance parameters that need to be addressed include:**
 - **COVERAGE:** Percent of time that data could be transmitted to the ISS via the commercial satellite system (this includes Static & Dynamic coverage and the effect of Inter Satellite Links)
 - **THROUGHPUT:** Maximum amount of information that can be exchanged between constellation & ISS, based on service availability and the per channel data rate
 - **QUALITY-OF-SERVICE:** Level of confidence for the reliable delivery of information to NASA users: Link quality (BER), Link Availability, Connectivity
 - **ANTENNAS & TERMINALS:** Antenna & earth terminal characteristics wrt required link quality. It would be necessary to have an antenna design well suited for covering both LEO vehicles and terrestrial traffic